Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death.
نویسندگان
چکیده
The central role of mitochondria in most pathways leading to programmed cell death (PCD) has focused our investigations into the mechanisms of glucose-induced neuronal degeneration. It has been postulated that hyperglycemic neuronal injury results from mitochondria membrane hyperpolarization and reactive oxygen species formation. The present study not only provides further evidence to support our model of glucose-induced PCD but also demonstrates a potent ability for uncoupling proteins (UCPs) to prevent this process. Dorsal root ganglion (DRG) neurons were screened for UCP expression by Western blotting and immunocytochemistry. The abilities of individual UCPs to prevent hyperglycemic PCD were assessed by adenovirus-mediated overexpression of UCP1 and UCP3. Interestingly, UCP3 is expressed not only in muscle, but also in DRG neurons under control conditions. UCP3 expression is rapidly downregulated by hyperglycemia in diabetic rats and by high glucose in cultured neurons. Overexpression of UCPs prevents glucose-induced transient mitochondrial membrane hyperpolarization, reactive oxygen species formation, and induction of PCD. The loss of UCP3 in DRG neurons may represent a significant contributing factor in glucose-induced injury. Furthermore, the ability to prevent UCP3 downregulation or to reproduce the uncoupling response in DRG neurons constitutes promising novel approaches to avert diabetic complications such as neuropathy.
منابع مشابه
Effect of rutin on oxidative DNA damage in PC12 neurons cultured in nutrients deprivation condition
Objective(s): Rutin is a flavonoid with potent antioxidant property, which exhibited cytoprotective effects in several models of neuronal injury. This work aimed to examine whether rutin can protect neurons against oxidative DNA damage caused by serum/glucose deprivation (SGD) as an in vitro model of neurodegeneration and ischemia. Materials and Metho...
متن کاملبررسی اثر نوروپروتکتیو آدنوزین بر بقای سلولهای بنیادی عصبی در شرایط آسیب اکسیداتیو با پراکسید هیدروژن
Background and Objective: Excessive production of free radicals during oxidative stress can cause serious damage to important biomolecules and activate programmed cell death pathways in the body. In the nervous system, neuronal cell death leads to many progressive neurodegenerative disorders. The aim of this study was to evaluate the effects of adenosine on the inhibition of apoptosis in oxidat...
متن کاملIncreased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington's disease.
Huntington's disease (HD) is a polyglutamine (polyQ) disease caused by an expanded CAG tract within the coding region of Huntingtin protein. Mutant Huntingtin (mHtt) is ubiquitously expressed, abundantly in neurons but also significantly in glial cells. Neuron-intrinsic mechanism and alterations in glia-to-neuron communication both contribute to the neuronal dysfunction and death in HD patholog...
متن کاملBiphasic Response to Luteolin in MG-63 Osteoblast-Like Cells under High Glucose‑Induced Oxidative Stress
Background: Clinical evidence indicates the diabetes-induced impairment of osteogenesis caused by a decrease in osteoblast activity. Flavonoids can increase the differentiation and mineralization of osteoblasts in a high-glucose state. However, some flavonoids such as luteolin may have the potential to induce cytotoxicity in osteoblast-like cells. This study was performed to investigate whether...
متن کاملHydrogen Sulfide Inhibits Autophagic Neuronal Cell Death by Reducing Oxidative Stress in Spinal Cord Ischemia Reperfusion Injury
Autophagy is upregulated in spinal cord ischemia reperfusion (SCIR) injury; however, its expression mechanism is largely unknown; moreover, whether autophagy plays a neuroprotective or neurodegenerative role in SCIR injury remains controversial. To explore these issues, we created an SCIR injury rat model via aortic arch occlusion. Compared with normal controls, autophagic cell death was upregu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 53 3 شماره
صفحات -
تاریخ انتشار 2004